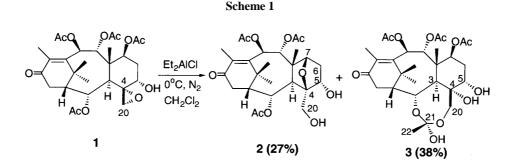
Et₂AlCl-Mediated Reaction of α-4(20)-Epoxy-5α-hydroxy Taxinine B


Qian CHENG*, Takayuki ORITANI, Tohru HORIGUCHI

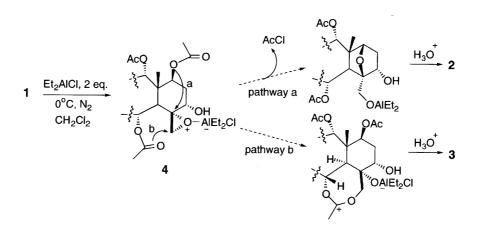
Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, sendai 981, Japan.

Abstract: An α -4(20)-epoxy-5 α -hydroxytaxinine B 1, when treated with diethylaluminum chloride, underwent reactions involving intramolecular substitution along with deacetylation or addition leading to new rings. Two novel 1-deoxy compounds 2 and 3 were isolated and fully characterized.

Keywords: Antitumour compounds, taxoides, epoxide, diethylaluminum chloride.

The anticancer drug paclitaxel (Taxol[®]), a diterpenoid isolated from the bark of *Taxus* brevifolia¹, is clinically used in the treatment of ovarian and breast cancers². Since its discovery in the 1960s, particularly in recent years, a large number of studies on chemistry and structure-activity relationship have been carried out and led to the general conclusion that the function groups at C₇, C₉, C₁₀, C₁₁₋₁₂ and C₈-CH₃ have modest but often beneficial effects on its biological activity, while the side chain at C13, the ester groups at C₂ and C₄ and the oxetane ring are all essential for biological activity³. Alothough the first semisynthesis of 1-deoxypaclitaxel analogs has been reported by Kingston, *et al*⁴, the role of the C₁-OH group on biological activity has not been very clear due to the fact that 1-deoxypaclitaxel and its derivatives are difficult to prepare⁵. Thus, chemical conversion of more readily available taxoids from Japanese yew to paclitaxel including 1-deoxypaclitaxel and their analogs is still interesting research area for chemists. In this communication we report two novel 1-deoxy compounds **2** and **3** obtained from α -4(20)-epoxy-5 α -hydroxytaxinine B **1** in the presence of diethylaluminum chloride and propose plausible mechanism of its reaction.

Qian CHENG et al.


Taxinine B^6 , one of the major taxoids isolated from the needles of Japanese yew Taxus *cuspidata*, which can be converted to 5α -hydroxytaxinine B according to known method¹. We found that Et₂AlCl-mediated reaction of α -4(20)-epoxy-5 α -hydroxytaxinine B 1 derived from 5α -hydroxytaxinine B by epoxidation using *m*-chloroperbenzoic acid⁸, in CH₂Cl₂ at 0°C under nitrogen yielded a 4.7-oxygen bridge (2, 27%) and a 6/8/6/7 ring system (3, 38%), two 1-deoxy compounds⁹ (Scheme 1). Analysis of the 1 H and 13 C NMR spectra of compound 2 indicated the loss of an acetyl group and this was substantiated by EIMS of 2 giving the molecular ion at m/z 508 and HREIMS suggesting the molecular formula as $C_{26}H_{36}O_{10}$ for M⁺ 508.2276. The ¹³C NMR and HMQC spectra showed that a tertiary carbon at δ_c 67.15ppm (d) and a quaternary carbon at δ_c 79.07ppm (s) were assigned to C-7 and C-4, respectively by HMBC correlations of H-3 ($\delta_{\rm H}$ 3.37, d, J=5.5Hz), H-5($\delta_{\rm H}$ 3.84, br dd) and H-6 ($\delta_{\rm H}$ 2.10, m, 1.83, m) to C-4 and C-7. All above information suggested that the presence of an oxygen-bridge was fused between C-4 and C-7 by HMBC correlation of H-7 ($\delta_{\rm H}$ 4.32, dd, J=5/4Hz) to C-4. Morever, the NMR data revealed the a hydroxymethylene group (δ_H 3.81, d, J=11.2Hz and 4.24, d, J=11.2Hz, H_2 -20; δ_c 63.47, t, C-20) was connected at C-4 by HMBC correlations of H-3 and H-5 to C-20 and H_2 -20 to C-4. The β -orientation of the oxyen-bridge was deduced by NOESY correlations of H-6 α to H-10 and H-3 and the absence of NOE relationship between H-5 and H-2 as well as between H-6 β and CH₃-19¹⁰. Compound **3** was found to have a molecular formula $C_{28}H_{40}O_{12}$ by HRFABMS for MH⁺ 569.2567(Δ 1.2mmu). The ¹H NMR data showed two protons at (δ_H 3.51, d, J=9Hz and 3.72, d, J=9Hz, H₂-20) suggesting an oxymethylene group was connected to C-4 ($\delta_{\rm C}$ 78.79, s). This was confirmed by HMBC correlations of: H-3 (δ_H 3.04, d, J=5Hz) and H-5 (δ_H 4.05, brt) to C-20 ($\delta_{\rm C}$ 74.24, t) and C-4, and H₂-20 to C-3 ($\delta_{\rm C}$ 43.59, d), C-4, and C-5 ($\delta_{\rm C}$ 70.10, d). In addition, the NMR spectra exhibited only three acetyl groups and a new singlet of quaternary carbon at downfield (δ_c 120.17, s, C-21), attributable to the carbon bearing three oxygen substituents which was further confirmed by HMBC correlations of H-2 $(\delta_{\rm H} 5.18, \text{ dd}, \text{ J}=5/2.4\text{Hz}), \text{ H}_2\text{-}20 \text{ and } \text{CH}_3\text{-}22 \ (\delta_{\rm H} 1.65, \text{ s}) \text{ to } \text{C}\text{-}21.$ The above observations indicated the presence of a seven-membered ring which was fused between C-2 and C-4. Finally the NOESY correlations of H-20a to H-2, CH₃-19 and H-20b to H-6β including CH₃-22 to H-2 indicated the oxymethylene group at C-4 and CH₃-22 both processing the β -orientation.

Plausible mechanism of Et_2AlCl -mediated reaction of compound **1** is shown in **Figure 1**. Formation of **2** and **3** from **1** can be explained *via* intramolecular substitution and addition, respectively. The most likely first step is the complexation of the Lewis acid with the α -epoxide to give **4**, then the oxygen at C-7 is positioned for nucleophilic attack at C-4 from β -face followed by loss of acetyl group (pathway a) leading to the oxygen-bridged precursor to compound **2**. Alternatively, compound **3** can arise easily from intermediate **4** *via* nucleophilic attack at C-20 by the oxygen of the acetyl group at C-2 generating a seven-membered ring bearing the carbocation at C-21 (pathway b), to be finally hydroxylated upon aqueous workup conditions.

In summary, two 1-deoxy compounds have obtained from α -(40)-epoxy-5 α -hydroxytaxinine B in the presence of diethylaluminum chloride and plausible mechanism of Et₂AlCl-mediated reaction has been proposed. Furthermore, it

is noted that compound 2 is the first sample bearing the oxygen-bridge fused between C-4 and C-7 in this taxoid series.

Figure 1. Plausible mechanism of Et2AlCl-mediated reaction of compound 1

Acknowledgments

Financial support of this work by Gtant-in-Aid for scientific reserch from the Ministry of Education, Science and Culture of Japan. JSPS fellowship to Dr. Q. Cheng is gratefully acknowledged. Dr. Q. Cheng also thanks Prof. X. T. Liang of Institute of Materia Medica, Chinese Academy of Medical Sciences, for his care and useful help.

References and Notes

- 1. M.C. Wani, H. L. Taylor, M. E. Wall, et al., J. Am. Chem. Soc., 1971, 93, 2325.
- a) F. A. Holmes, A. P. Kudelka, J. J. Karanagh, et al., Taxane Anticancer Agents: Basic Science and Current Status, G. I. Georg, T. T. Chen, I. Ojima, et al., Ed. American Chemical Society: Washington, DC, 1994, pp. 31.
 - b) S. G. Arbuck, B. A. Blaylok, *In Taxol: Science and Applications*, M. Suffness Ed.CRC Press Inc., Boca raton, FL, **1995**, pp. 379.
- 3. a) D. G. I. Kingston, A. A. Molinero, J. M. Rimoldi, Prog. Chem. Org. Nat. Prod., 1993, 61,1.
- b) M. Suffness, Annu. Rep. Med. Chem., 1993, 28, 305; G. I. Georg, S. M. Ali, J Zymumt, et al., Expert Opin. Ther. Pat., 1994, 12, 222.
- 4. D. G. I. Kingston, M. D. Chordia, G. J. Prakash, et al., J. Org. Chem., 1999, 64, 1814.
- a) S. H. Chen, S. Huang, Q. Gao, et al., J. Org. Chem., 1994, 59, 1475.
 b) A. G. Chaudhary, M. D. Chordia, D. G. I. Kingston, J. Org. Chem., 1995, 60, 3260.
 c) C. Z. Yu, Z. Y. Liu, Tetrahedron Lett., 1997, 38, 4133.
- 6. M. C. Woods, H.C. Chiang, Y. Nakadaira, et al., J. Am. Chem. Soc., 1968, 522.
- 7. Y. Bathini, R. G Micetich, M. Daneshtalab, Synth. Commun., 1994, 24, 1513.
- 8. a) Q. Cheng, T. Oritani, T. Horiguchi, *Tetrahedron*, **1999**, *55*, 12099.
- b) H. Hosoyama, H. Shigemori, Y. In, et al., Tetrahedron 1998, 54, 2521.
- 9. Experimental procedure of Et₂AlCl-mediated reaction and selected spectral data as follows: To an ice-cooled solution of α-4(20)-epoxy-5α-hydroxytaxinine B 1 (55 mg, 0.1 mmol) in dry CH₂Cl₂ (2 ml), was added Et₂AlCl 1.0M solution in hexanes (0.2 ml, 0.2 mmol) at 0°C under nitrogen. The reaction mixture was stirred for 0.5 h and then the saturated aqueous NH₄Cl (0.5 ml) was added. The resulting mixture was extracted with CHCl₃ and dried

Qian CHENG et al.

over MgSO₄. After removal of solvent, the residue was chromatographed on siclica gel (EtOAc:hexane=2:1) to give compounds 2 (14 mg, 27%) and 3 (21 mg, 38%). Compound 2: $[\alpha]^{22}_{D}$ +57 (c 0.6, CHC₁₃). UV $\lambda_{max}(lg\epsilon) = 243$ nm (3.65). ¹H-NMR(600MHz, CDC₁₃) δ_{H} : 1.13 (s, 3H, CH₃-19), 1.21(s, 3H, CH₃-17), 1.70(s, 3H, CH₃-16), 1.83(m, 1H, H-6), 2.05(s, 3H, Ac), 2.08(s, 3H, Ac), 2.10(m, 1H, H-6), 2.15(s, 3H, Ac), 2.17(dd, 1H, J=6.7, 2.2Hz, H-1), 2.26(s, 3H, CH₃-18), 2.78(dd, 1H, J=19.5, 6.7Hz, H-14β), 3.24(d, 1H, J=19.5Hz, H-14α), 3.37(d, 1H, J=5.5Hz, H-3), 3.81(d, 1H, J=11.2Hz, H-20), 3.84(brdd, 1H, H-5), 4.24(d, 1H, J=11.2Hz, H-20), 4.32(dd, 1H, J=5, 4Hz, H-7), 5.76(dd, 1H, J=5.5, 2.2Hz, H-2), 5.94(d, 1H, J=11Hz, H-9), 6.21(d, 1H, J=11Hz, H-10). ¹³C-NMR(150MHz, CDC₁₃) δ_c : 13.45(q, C-19), 14.52(q, C-19), 1 C-18), 20.77, 20.92, 21.47(3×q, 3×Ac), 25.47(q, C-16), 33.27(t, C-6), 36.47(t, C-14), 36.75(q, C-17), 38.56(s, C-15), 45.69(d, C-3), 48.13(d, C-1), 49.24(s, C-8), 63.42(t, C-20), 67.15(d, C-7), 70.05(d, C-5), 70.94(d, C-2), 72.48(d, C-10), 74.32(d, C-9), 79.07(s, C-4), 140.02(s, C-12), 150.15(s, C-11), 169.41, 169.84, 170.67(3×s, 3×Ac), 199.86(s, C-13). HREIMS calcd. for $C_{26}H_{36}O_{10}$ (M⁺) 508.2306, found 508.2276 (Δ 2.3 mmu). Compound 3: $[\alpha]^{22}_{D}$ +135 (c 0.15, CHCl₃). UV $\lambda_{max}(lg\epsilon)$ =239 nm (3.36). ¹H-NMR(600MHz, CDCl₃) δ_{H} : 1.01 (s, 3H, CH₃-19), 1.21(s, 3H, CH₃-17), 1.65(s, 3H, CH₃-22), 1.70(m, 1H, H-6), 1.75(s, 3H, CH₃-16), 1.95(m, 1H, H-6), 2.01(s, 3H, Ac), 2.06(s, 3H, Ac), 2.14(s, 3H, Ac), 2.17(dd, 1H, J=6.5, 2.4Hz, H-1), 2.20(s, 3H, CH₃-18), 2.84(dd, 1H, J=19.5, 6.5Hz, H-14β), 3.04(d, 1H, J=5Hz, H-3), 3.12(d, 1H, J=19.5Hz, H-14α), 3.51(d, 1H, J=9Hz, H-20), 3.72(d, 1H, J=9Hz, H-20), 4.05(brt, 1H, H-5), 5.18(dd, 1H, J=5, 2.4Hz, H-2), 5.59(dd, 1H, J=11.5, 5.2Hz, H-7), 5.87(d, 1H, J=11Hz, H-9), 6.24(d, 1H, J=11Hz, H-10). 13 C-NMR(150MHz, CDCl₃) δ_c : 13.09(q, C-19), 14.15(q, C-18), 20.43, 20.76, 20.92(3×q, 3×Ac), 23.10(q, C-22), 24.86(q, C-16), 31.78(t, C-6), 34.16(q, C-17), 37.42(t, C-14), 38.67(s, C-15), 43.59(d, C-3), 48.02(s, C-8), 48.54(d, C-1), 69.42(d, C-7), 70.10(d, C-5), 72.07(d, C-10), 73.43(d, C-2), 74.24(t, C-20), 75.12(d, C-9), 78.79(s, C-4), 120.17(s, C-21), 140.67(s, C-12), 152.86(s, C-11), 169.23, 169.83, 170.42(3×s, 3×Ac), 199.67(s, C-13). HRFAB-MS calcd. for C₂₈H₄₁O₁₂ (MH⁺) 569.2595, found 569.2567 $(\Delta 1.2 \text{ mmu}).$

10. Molecular model studies show if the oxygen-bridge is the α -orientation, the molecule should have NOESY correlations of H-5 to H-2 and CH₃-19 as well as H-6 β to CH₃-19. However, such correlations were not observed in NOESY experiment of **2**.

Received 13 September 1999